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IKONOS Imagery to Estimate Surface Soil Property Variability
in Two Alabama Physiographies

Dana G. Sullivan,* J. N. Shaw, and D. Rickman

ABSTRACT c-means clustering of remotely sensed (RS) data, and
multiple linear regression relating spectral response toKnowledge of surface soil properties is used to assess past erosion
soil attributes may be used to evaluate variability inand predict erodibility, determine nutrient requirements, and assess

surface texture for soil survey applications. This study was designed to surface soil properties.
evaluate high resolution IKONOS multispectral data as a soil-map- The basic relationships between spectral response and
ping tool. Imagery was acquired over conventionally tilled fields in soil properties have been well researched. Early studies
the Coastal Plain and Tennessee Valley physiographic regions of Ala- have shown a negative correlation exists between sur-
bama. Acquisitions were designed to assess the impact of surface crust- face TC and reflectance in the visible (VIS) and near infra-
ing, roughness, and tillage on our ability to depict soil property variabil- red (NIR) (Baumgardner et al., 1970; Sudduth and Hum-
ity. Soils consisted mostly of fine-loamy, kaolinitic, thermic Plinthic

mel, 1991; Henderson et al., 1992). Increasing amountsKandiudults at the Coastal Plain site and fine, kaolinitic, thermic
of TC have a darkening effect, consequently reducingRhodic Paleudults at the Tennessee Valley site. Soils were sampled
the amount of energy reflected. Similarly, Coleman andin 0.20-ha grids to a depth of 15 cm and analyzed for percentages of
Montgomery (1987) found a strong negative correlationsand (0.05–2 mm), silt (0.002–0.05 mm), clay (�0.002 mm), citrate-

dithionite extractable Fe, and total C (TC). Four methods of evaluat- (r � �0.58) between TC and NIR (0.76–0.90 �m) reflec-
ing variability in soil attributes were evaluated: (i) kriging of soil at- tance in Vertisols and Alfisols in Alabama’s Blackbelt
tributes, (ii) cokriging with soil attributes and reflectance data, (iii) region. These authors noted increasing soil water con-
multivariate regression based on the relationship between reflectance tent, coincident with increasing TC, tended to depress
and soil properties, and (iv) fuzzy c-means clustering of reflectance surface reflectance and mask spectral features of inter-
data. Results indicate that cokriging with remotely sensed (RS) data est (Johnson et al., 1998).
improved field scale estimates of surface TC and clay content com-

Soil texture also impacts soil spectral response curves.pared with kriging and regression methods. Fuzzy c-means worked
In highly weathered and eroded soil systems of thebest using remotely sensed data acquired over freshly tilled fields,
Southeastern Coastal Plain and Tennessee Valley phys-reducing soil property variability within soil zones compared with
iographic regions, the sand (0.05–2 mm) fraction is pri-field scale soil property variability.
marily composed of quartz with lesser quantities of mica,
and clay (�0.002 mm) particles consist of kaolinite, with
lesser quantities of hydroxy–interlayered vermiculite, FeSurface soil properties are often used to assess soil
oxides, and gibbsite (Shaw et al., 2002, 2003). In erodedquality, establish soil survey map units, and deter-
soils, increasing clay quantities at the surface attenuatemine agrochemical application rates. Current soil sam-
reflectance as finer particles cause scattering of energypling methods designed to capture field scale variability
(Mathews et al., 1973; Stoner and Baumgardner, 1981;include grid-sampling and directed sampling using man-
Salisbury and D’Aria 1992). Barnes and Baker (2000)agement zones. In a grid-sampling approach, grids are
used multispectral airborne and satellite data to createcreated in an attempt to assess spatial variability (Fran-
surface soil texture maps for two sites at the Maricopazen and Peck, 1995). Depending on field size and vari-
Research Farm in Arizona. Due to variability in soilability, an accurate assessment of soil properties is best
water content, surface roughness, and residue cover be-achieved through a densely sampled grid, making spatially
tween sites, RS-derived soil texture maps were mostrepresentative estimates cost-prohibitive. While manage-
accurate when generated on a site-by-site basis. Thomas-ment zone (directed) sampling shows promise, represen-
son et al. (2001) reported similar findings, which showedtative zones are best developed over time using a com-
the relationship between spectral response and soil tex-bination of data layers such as yield, topography, and
ture was highly variable between two farm sites in Mis-soil maps (Franzen et al., 1998). Newly available high-
sissippi. However, using spectra within the 0.40- to 0.80-resolution satellite imagery may discriminate among dif-
and 0.95- to 1.05-�m ranges �50% of the variability inferences in surface soil attributes. Methods such as co-
soil texture was explained.kriging soil samples with highly correlated spectra, fuzzy

Soil spectral response relative to the amount of min-
eral, organic, and water content has been well estab-D.G. Sullivan, USDA ARS Southeast Watershed Research Lab., P.O.
lished. However, extrapolation to field conditions is con-Box 748, Tifton, GA 31794; J.N. Shaw, Dep. of Agronomy and Soils,

Auburn University, 202 Funchess Hall, Auburn, AL 36849; D. Rick- founded by variability in surface roughness, crop residue
man, Global Hydrology and Climate Center, NSSTC/MSFC/NASA, cover, crusting, and soil water content. Several methods
320 Sparkman Drive, Huntsville, AL 35805. Received 7 Mar. 2005. show potential for improving our ability to discriminate*Corresponding author (dgs@tifton.usda.gov).

among changes in surface soil attributes. Two of these
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methods include: cokriging less-densely sampled soil at- our ability to depict surface soil variability using newly
available, high-resolution satellite imagery. Specificallytributes with highly correlated spectra and fuzzy c-means

clustering of pixels based on differences in surface re- we will: (i) investigate the utility of IKONOS multispec-
tral satellite imagery to assess the spatial variability offlectance.

Geostatistical analyses that integrate high resolution surface soil properties under different tillage regimes,
and (ii) evaluate the potential of three methods relatingRS data with measured surface properties may improve

our ability to resolve finer differences among surface RS to soil property variability (multivariate regression,
kriging, and cokriging) and one clustering-based algo-soil properties. Early research by Zhang et al. (1992)

demonstrated that cokriging with a highly correlated rithm (fuzzy c-means) to resolve surface soil variability.
covariate could be used to improve estimates of soil tex-
ture. In their study, soil samples were collected on a

MATERIALS AND METHODS100-m grid and analyzed for soil texture. Reflectance
was measured using a handheld radiometer under wet Study Sites
and dry conditions. Results showed that cokriging re- Study sites were located in two intensive agricultural regionsduced mean square errors by 33% using only 17 to 25% of Alabama. The Coastal Plain study site was located on a
of the original soil samples. More recently, Bishop and 52-ha farm near Headland, AL (85�16�04″ W long., 34�38�14″ N
McBratney (2001) compared statistical and geostatisti- lat.). The landscape is gently sloping and soils formed in sandy
cal algorithms to map soil cation exchange capacity. and loamy fluvial-marine sediments and classify mostly as fine-
Covariates used in this study included apparent electri- loamy, kaolinitic, thermic Plinthic Kandiudults. The Coastal

Plain is intensively cropped to peanuts (Arachis hypogaea),cal conductivity, Landsat imagery and crop yield. Re-
cotton (Gossypium hirsutum L.), and corn (Zea mays L.). Thesults suggested that algorithms utilizing electrical con-
second study site was located on a 31-ha farm in the Tennesseeductivity or RS imagery as a covariate improved results
Valley near Decatur, AL (87�08�42″ W long., 34�38�49″ N lat.).over traditional statistics and simple kriging.
This region is proximate to the Tennessee River and moreFuzzy c-means is a multivariate clustering algorithm steeply sloping compared with the Coastal Plain. Soils formedthat differs fundamentally from other multivariate clus- from limestone residuum, and classify mostly as fine, kaolin-

tering algorithms by allowing non-normal data distribu- itic, thermic Rhodic Paleudults. Typical land-use practices for
tions and partial class membership. Recent studies have this region are row-cropping with cotton, corn, and wheat
utilized fuzzy c-means to generate detailed digital soil (Triticum aestivum L.).
maps by clustering physical and chemical soil properties Each site was managed as a conventionally tilled system

representative of the two physiographic regions. Remote sens-(Young and Hammer, 2000; Triantafilis et al., 2001).
ing acquisitions were designed to capture differences in soilHowever, the real potential of cluster analyses may lie
attributes as well as the impact surface conditions may havein the utilization of RS imagery. Because reflectance is
on spectral reflectance (Fig. 1). Data were acquired at thecorrelated with many soil attributes, fuzzy cluster analy-
Tennessee Valley site on 19 Feb. 2002. Surface conditionssis of high-resolution satellite imagery shows promise
were rough and typical of clayey soils following fall-tillageas a tool for the delineation of soil variability.
and winter fallow. Data were acquired twice at the CoastalAssessment of surface soil property variability is criti- Plain site, 14 Feb. 2002 and 27 Mar. 2002, and designed to cap-

cal to site-specific management, soil survey and natural ture pre- and post-tillage surface conditions. This is particu-
resource inventory. However, directed soil sampling ap- larly important in the sandy soils of the Coastal Plain, where
proaches have been limited in the past by researcher surface crusting following rainfall events is common. Crusting
bias in sampling design and failure to treat the soil as occurs when rainfall or irrigation events mechanically break-

down and disperse soil aggregates. Dispersed clay particles set-a continuous surface. This study was designed to evaluate

Fig. 1. IKONOS images displaying a false color composite of the red (0.63–0.69 �m), green (0.52–0.60 �m), and near infrared (0.76–0.90 �m)
for each site and acquisition. Data were acquired on 2/14/02 (pretillage) and 3/27/02 (post-tillage) at the Coastal Plain site and 2/19/02 at the
Tennessee Valley site. Data are provided as a point of comparison with cokriged and fuzzy clustering results.
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tle within pore spaces, and effectively reduce infiltration (Agassi atmospheric contribution/attenuation, the internal average rel-
ative reflectance is considered an effective means of removinget al., 1981) can significantly alter reflectance properties (Eshel

et al., 2004; Ben-Dor et al., 2003). To evaluate the impact of or reducing atmospheric effects (Kruse, 1988). Kruse (1988)
successfully used this approach to compare Airborne Imag-surface crusting on spectral reflectance at the Coastal Plain

site, the first image was acquired over a crusted surface before ing Spectrometer data with laboratory-derived spectra of hy-
drothermally active rocks. Data showed that internal averagespring tillage, and a second image was acquired over relatively

smooth, freshly tilled, cultivated soil. relative reflectance values closely approximated laboratory
spectra.

Soil Analyses
Spectral Response CurvesEach study site was grid sampled coincident with satellite

data acquisition. Soils at each site were near field capacity at Spectral response curves corresponding to each RS acquisi-
the time of sampling. Soils were a composite of ten random tion were created to illustrate the impact of tillage regime
samples (0–15 cm) within a 5-m radius of the center of each and soil texture on observed reflectance patterns. Spectral
0.20-ha grid. Samples were collected to the depth of soil mixing response curves were generated for the Coastal Plain site only,
in conventional tillage operations. The number of soil samples since RS data were captured pre- and post-tillage. Spectral
per site amounted to n � 246 at the Coastal Plain study site response curves for each RS acquisition represent soils having
and n � 158 at the Tennessee Valley site. Before laboratory a range in clay content (5.6–29.8%) (Fig. 2).
analysis, soil samples were air dried and sieved to pass a 2-mm
sieve. Analyses included total TC via dry combustion on pul- Statistical Analysis
verized samples (Campbell, 1992), citrate-dithionite extract-

Statistical analyses were designed for systematic compari-able Fe (Jackson, 1975) and particle-size distribution on the
son of RS-based and non RS-based methods of assessing field�2-mm fraction (Kilmer and Alexander, 1949).
scale TC and clay content variability. Surface TC and clay con-
tent were chosen as the variables of interest as they impactIKONOS Multispectral Scanner
infiltration, sedimentation and aggregation, and agrochemical

The IKONOS1 satellite (Space Imaging, Thornton, CO) or- application rates/placement. Four methods of analysis were
bits the earth in a sun synchronous orbit at an altitude of chosen: kriging, cokriging, multivariate regression, and fuzzy
681 km. The sensor on board IKONOS possesses a multispec- c-means clustering.
tral scanner equipped with three VIS, one NIR, and one pan-
chromatic (PAN) band (Table 1). Visible and NIR bands ac- Correlationquire data with 4 m spatial resolution, and PAN data are
acquired at 1-m spatial resolution. Data were collected on days Before cokriging, multivariate regression, and fuzzy c-means

clustering, the correlation between spectral response and soilhaving �10% cloud cover, as close to solar noon as possible.
Multispectral data were adjusted for atmospheric attenua- attributes was evaluated. Remotely sensed data were extracted

using a 5-m buffer around all geospatially attributed sampletion using an Internal Average Relative Reflectance algorithm
in ERDAS Imagine1 (Leica Geosystems, Heerbrugg, Switzer- locations and correlated with measured TC and clay content

(p � 0.05). Next, highly correlated bands were selected as in-land) for each IKONOS scene. The internal average relative
reflectance assumes that average scene reflectance is composed put for cokriging, multivariate analyses, and fuzzy c-means clus-

tering.of a variety of surface attributes (vegetation, water, soil) and
approximates a spectrally flat field. Internal average relative
reflectance reduces spectral contributions from common vari- Kriging
ables, such as atmospheric interference, by taking a ratio of each

Kriging was chosen as a non-RS based method. Based onpixel and the flat field value (ERDAS, 2002). In some cases,
spatial covariance properties, kriged maps of TC and clay con-this can eliminate or reduce absorption features of interest
tent were generated for each site using measured TC and clay(Zamudio and Atkinson, 1990). However, in practice, internal
content from grid sampled locations. Unlike RS-based meth-average relative reflectance has been shown to work well when

certain criterion are met: (i) scene is representative of a variety
of surface attributes, (ii) no significant changes in topography
exist, and (iii) atmospheric properties are constant within a
scene (ERDAS, 2002). Because the flat field is generated from
at-sensor digital values representative of surface features and

1 Use of a particular product does not indicate the endorsement of
Auburn University, the Alabama Agricultural Experiment Station,
National Aeronautics and Space Administration, or the USDA Agri-
cultural Research Service.

Table 1. Wavelength and spatial resolution for each visible (VIS),
near infrared (NIR) and panchromatic bands on the IKONOS
sensor.

Wavelength Spectra Spatial resolution

�m m2 Fig. 2. Spectral response curves constructed using sampling points
0.45–0.52 VIS-blue 4 (n � 10) that correspond to soils having increasing percentages of
0.52–0.60 VIS-green 4 surface clay (5.6, 15.0, and 29.8%) content at the Coastal Plain
0.63–0.69 VIS-red 4 study site. Data were acquired on 2/14/02 (pretillage) and 3/27/02
0.76–0.90 NIR 4 (post-tillage). Reflectance was reported as Internal Average Rela-
0.45–0.90 PAN 1 tive Reflectnace (IARR).
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Table 2. Semivariogram parameters for surface total carbon (TC), clay, and remotely sensed data at the Tennessee Valley and Coastal
Plain study sites. Nugget semivariance, range, and r2 are reported for each variate, covariate and cross covariance.

Site Method Variate Covariate Range Nugget semivariance r 2

m %
Tennessee Valley Kriging TC – 822.9 20.73 0.96

Cokriging – Red 292.8 47.85 0.89
Cokriging TC Red 263.8 9.60 0.97
Kriging Clay – 228.0 23.57 0.97
Cokriging – Green/Red 154.1 10.85 0.86
Cokriging Clay Green/Red 263.8 1.33 0.97

Coastal Plain (Pretillage) Kriging TC – 192.4 6.93 0.98
Cokriging – NIR 163.0 1.62 0.99
Cokriging TC NIR 186.8 2.43 0.98
Kriging Clay – 197.6 0.01 0.98
Cokriging – Green 188.7 7.15 0.99
Cokriging Clay Green 200.4 2.11 0.96

Coastal Plain (Post-tillage) Kriging TC – 192.4 6.93 0.98
Cokriging – NIR 155.3 0.04 0.99
Cokriging TC NIR 180.8 0.20 0.98
Kriging Clay – 197.6 0.01 0.98
Cokriging – Green 176.3 0.04 0.99
Cokriging Clay Green 192.4 0.18 0.94

ods, kriged maps are independent of surface conditions at the of the new datasets, isotropic, and anisotropic semivariograms
time of sampling. for each variate, covariate, and cross-covariation were evalu-

Before kriging, 10% of the sample points were randomly ated. All data showed well-structured isotropic semivariance
selected and retained for accuracy assessments. Using the re- and were analyzed using the spherical model. Nugget semi-
maining sample points, the spatial structure of each dataset variances were also calculated to evaluate the degree of spatial
was evaluated via isotropic and anisotropic semivariograms. dependence for each soil property, corresponding covariate,
Semivariograms constructed for each variate were well struc- and cross covariance.
tured with minimal anisotropy. Semivariograms were best rep- Next, interpolated maps of TC and clay content were gener-
resented using the spherical model. Spatial dependence was ated using block cokriging. Pixel sizes were set to 4-m to cor-
estimated via nugget semivariance, which represents the per- respond with the spatial resolution of the RS imagery. Similar
centage of nugget (unexplained variance) compared with the to the above, RMSEs were calculated between measured and
total variability accounted for in the semivariogram (nugget � interpolated values of TC and clay content at each site and
sill). Nugget semivariances �25% indicate strong spatial de- residual distributions evaluated.
pendence while nugget semivariance �75% are weakly spa-
tially dependent (Cambardella et al., 1994). In all cases, RS and

Multivariate Regressionsoil data exhibited moderate to strong spatial dependencies
with correlation ranges between 154 to 293 m (Table 2). Multiple linear regression analyses between RS data and TC

Interpolated maps of TC and clay content were generated or clay content were evaluated as a nongeospatial technique.
using block kriging at 4-m resolution. Block kriging was chosen Multivariate regression was based on the relationship between
because sampled locations were considered representative of spectral response and TC or clay at a point, thus data are not
an area (5-m radius). Using soil samples retained for accuracy treated as a continuous surface and the spatial covariation
assessments, root mean square errors (RMSE) were calculated between points is ignored.
between measured and interpolated values of TC and clay A 5-m buffer around each soil point was used to extract
content at each site. Distribution of the residuals was examined internal average relative reflectance data from each image. A
to identify any bias in interpolated estimates. random selection of 10% of the points were removed and re-

tained for accuracy assessments. Using the remaining sample
Cokriging points, multiple linear regression analyses were performed

using the NIR and three VIS bands, along with the green toCokriging is a hybrid interpolation procedure, which takes
red band ratio [(0.52–0.60 �m)/(0.63–0.69 �m)], which wasadvantage of the correlation between a secondary, more in-
correlated with clay content (r � 0.47) at the Tennessee Valleytensely sampled variable, and the primary variate (Zhang
site. A variance inflation factor was included in the regressionet al., 1992). In this study, high-resolution RS data were used
analyses to systematically remove spectra that were highlyas the secondary variate. Since spectral response has been
correlated with each other. Using the multiple linear regres-shown to vary with surface roughness, crusting, and soil water
sion equations generated for each dataset, estimates of TCcontent (Coleman and Montgomery, 1987; Johnson et al., 1998),
and clay were calculated using data retained for the accuracycokriging was chosen to evaluate whether RS data paired
assessment. Estimated versus measured TC and clay contentswith measured soil attributes could be used to reduce the
were used to calculate RMSEs and residual distributions.uncertainty in our ability to resolve soil property variability.

Using the same random selection of points as defined for
kriging, new data sets were created by assigning georeferenced Fuzzy c-Means
soil data to the corresponding RS image(s) in a geographic

Remotely sensed data for each acquisition were clusteredinformation system. In our case, new data sets comprised the
using a multivariate fuzzy c-means algorithm (Fridgen et al.,February 19 RS acquisition at the Tennessee Valley site, the
2000). This approach requires the least amount of a priori inputFebruary 14 RS acquisition at the Coastal Plain site, and the
compared with kriging, cokriging, and multivariate regression.March 27 RS acquisition at the Coastal Plain site. Covariates
Because fuzzy c-means clustering is designed to handle non-were chosen by selecting the band or band ratio that was most

highly correlated (P � 0.05) with each soil property. For each normal data distributions and allow partial class membership,
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Table 3. Pearson’s correlation coefficients (p � 0.05) relating remotely sensed IKONOS data to surface (0–15 cm) total carbon (TC)
and clay content at the Tennessee Valley and Coastal Plain study sites.

IKONOS Bands, r

Site Acquisition Soil property 0.76–0.90 0.63–0.76 0.52–0.60 0.52:0.63

�m
Tennessee Valley 2/19/02 TC �0.25 �0.31 �0.29 0.21

Clay �0.20 �0.12 �0.45 0.47
Coastal Plain 2/14/02 TC �0.39 �0.23 �0.20 0.26

Clay �0.52 �0.54 �0.61 0.18
Coastal Plain 3/27/02 TC �0.75 �0.73 �0.71 0.78

Clay �0.57 �0.53 �0.58 0.47

it is an ideal approach for landscape or field-scale assessments (33.6% 	 0.8). Differences in TC content were less sub-
(Fridgen et al., 2004). stantial between sites with slightly greater TC at the

Remotely sensed variables most highly correlated with TC Coastal Plain (0.60% 	 0.32) compared with the Ten-
and clay content were chosen as input into the multivariate nessee Valley (0.49% 	 0.22).
clustering algorithm. For each site, the two spectral bands
most highly correlated with TC and clay content were chosen.

Spectral RelationshipsA single RS acquisition at the Tennessee Valley site showed
that red (0.63–0.69 �m) spectra for TC and the green to red Spectral response curves before and after a tillageband ratio for clay content were best correlated (Table 3). In

event at the Coastal Plain site showed reflectance pat-the Coastal Plain, two RS data sets were evaluated. Analyses
terns associated with texture and surface conditions atshowed that for both RS acquisitions the green and NIR spec-
the time of RS data acquisition. The shapes of the spec-tra were best correlated with clay and TC, respectively. Before
tral response curves were consistent between tillages,clustering, the variance and covariance for each spectral band

were assessed to determine the most appropriate clustering with differences primarily in the magnitude of response
technique. Because spectral data for each field exhibited un- (Fig. 2). Pre- and post-tillage spectral response curves
equal variances with covariance values greater than zero, the showed that surface soils with a higher clay content
Mahalanobis Distance Method was used to delineate clusters. caused a corresponding decrease in reflectance. This is
A fuzziness threshold of 1.3 was assigned as suggested by in agreement with previous research, which shows soil
Fridgen et al. (2004) for soil surfaces. reflectance curves are positively related to soil particleThe clustering software, Management Zone Analyst (Frid-

size as finer particles cause scattering of light (Mathewsgen et al., 2004), generates two performance indices as a metric
et al., 1973; Stoner and Baumgardner, 1981; Salisburyof the organization gained with each additional cluster. Each
and D’Aria, 1992). Differences in the magnitude of re-method ranges in value from 0 (highly organized) to 1 (disorga-
flectance between tillage events provided evidence thatnized). Performance indices indicated that the Tennessee Val-

ley site was best organized into three zones, while the Coastal surface conditions, particularly crusting, substantially
Plain site was best organized into two zones pretillage and impacts the magnitude of reflectance. Our data showed
four zones post-tillage. To evaluate the performance of the surfaces were most reflective before tillage, which is not
c-means clustering, the coefficient of variation (CV) was calcu- surprising given that these sandy soils are prone to sur-
lated for all measured soil properties (TC, sand, silt, and clay) face crusting. Essentially, rainfall or irrigation between
across the field and within delineated soil zones. tillage events slowly detaches silt- and clay-size parti-

cles from quartz grains. Over time these particles fill
RESULTS AND DISCUSSION pore spaces, leaving the more reflective quartz grains

exposed.Soil Attributes
Surface soil properties at each site were representa- Correlationtive of two distinct physiographic provinces within the

Soil properties were best correlated with spectral re-state of Alabama, differing in sand, silt, clay, citrate-
sponse at the Coastal Plain (Table 3). A negative lineardithionite extractable Fe, and TC content (Table 4).
relationship existed between clay content and all spec-Soils collected at the Coastal Plain study site were pre-
tral bands, peaking at 0.52 to 0.76 �m (r � �0.61, p �dominantly sandy loam and loamy sand textured, with
0.05). This relationship was consistent between tillagea mean sand content of 75.8% (	8.6). Lesser amounts
events. Earlier research has shown a similar pattern ofof silt (13.1% 	 0.3), clay (11.2% 	 4.2), and Fe (0.57 	
decreasing spectral reflectance with increasing percent-0.21) were found. Tennessee Valley soil samples had
age of surface clay content, which is likely associatedhigher quantities of silt (46.2% 	 1.0), clay (19.7% 	

7.7), and Fe (1.50 	 0.69) with lower amounts of sand with a corresponding increase in the water holding ca-

Table 4. Near-surface (0–15 cm) total carbon (TC), sand, silt, clay, and citrate dithionite extractable iron (Fed) content at the Coastal
Plain and Tennessee Valley study sites. Standard deviations are given in parentheses.

Site Sample TC Sand Silt Clay Fed

%
Tennessee Valley 148 0.49 (0.22) 34.1 (9.6) 46.2 (1.0) 19.7 (7.7) 1.50 (0.69)
Coastal Plain 246 0.60 (0.32) 75.8 (8.6) 13.1 (0.3) 11.2 (4.2) 0.57 (0.21)
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Table 5. Root mean square error (RMSE) analyses for estimatedpacity of finer soils (Mathews et al., 1973; Stoner and
total carbon (TC) and clay content at the Tennessee ValleyBaumgardner, 1981; Salisbury and D’Aria, 1992). As and Coastal Plain sites. Results are reported for kriging (KRG),

previously reported by Stoner and Baumgardner (1981), and cokriging (CK), and multiple linear regression (MLR).
our data also show that TC content was negatively corre-

RMSElated with reflectance peaking in the 0.63 to 0.76 �m
KRG CK MLR(r � �0.75, p � 0.05) region. The correlation between

TC and spectra was best following spring tillage. %
Tennessee Valley, 2/19/2002At the Tennessee Valley study site, a similar trend

Clay 5.03 0.02 3.33was observed with correlation coefficients peaking at
TC 0.11 0.04 0.110.63 to 0.76 �m for TC (r � �0.31), and the green to

Coastal Plain, 2/19/2002red band ratio for clay (r � 0.47). Compared with the
Clay 2.05 4.02 2.18Coastal Plain site, the correlation between soil proper- TC 0.22 0.02 0.24

ties and spectral response were much lower in the Ten- Coastal Plain, 3/27/2002
nessee Valley. At the Tennessee Valley site, rough sur- Clay –† 0.84 2.42

TC – 0.07 0.14face conditions typical of a clayey soil following fall
tillage may have contributed to the low correlation be- † Denotes missing RMSE for the kriged data set at the Coastal Plain study

site on 3/27/02. Because kriging is independent of remotely sensed data,tween spectral response and clay content observed. Spe-
kriged estimates of soil properties were calculated only one time.cifically, reflectance typically decreases with increasing

roughness due to shadowing and scattering of light
ing soil properties with an intensely sampled covariate(Matthias et al., 2000). Conversely, at the Coastal Plain
(digital elevation data, 10-m spatial resolution) providedsite, sandier surfaces were relatively smooth following
the most accurate estimation of soil properties com-tillage.
pared with kriging and regression-kriging. Using high
resolution IKONOS imagery in this study, we were able

Kriging to discriminate among small differences in TC content
at a finer spatial resolution (4 m).Total Carbon

For both RS acquisitions at the Coastal Plain site,
At the Tennessee Valley site, kriged estimates of TC cokriging TC with correlated NIR spectra (r � �0.39–

content resulted in a RMSE between predicted versus 0.75, pre- and post-tillage respectively) increased the
measured TC content � 0.11% (Table 5). The RMSE spatial dependency of the data and reduced uncertainty
for kriged estimates of TC at the Coastal Plain was in estimated TC content by as much as 0.20% (absolute)
relatively higher compared with the Tennessee Valley compared with kriged estimates (Tables 2 and 5). Con-
(RMSE � 0.22% TC). At both sites, a comparison of sidering the low range in TC reported this is a signifi-
predicted versus measured TC showed a tendency to cant improvement in our ability to estimate TC content.
overestimate TC at contents �0.60%. In these highly Atkinson et al. (1994) showed that despite a weak corre-
weathered systems under conventional tillage manage- lation between RS data and green leaf area index and
ment, TC contents are generally low, so this type of pasture biomass, cokriging with RS data greatly im-
error could disproportionably impact kriged estimates proved estimates of green leaf area index and pasture
of TC. biomass. Our results indicate that even with a low corre-

lation between TC and RS data (as low as r � �0.39)
Clay a stronger spatial structure and improved estimates of

TC content were obtained. This is particularly importantAt the Tennessee Valley site, kriged estimates of clay
in these highly weathered soil systems with a low rangecontent resulted in a RMSE � 5.03%. Nugget semi-
in TC content (�1.0%) (Table 4).variance estimates at the Tennessee Valley site suggest

only a moderate spatial relationship exists (nugget semi-
Clayvariance � 23.57%). A much stronger spatial relation-

ship was observed for clay contents at the Coastal Plain At the Tennessee Valley site, cokriged estimates of
site (nugget semivariance � 0.01%), resulting in a lower clay content were an improvement over kriging, lower-
RMSE compared with the Tennessee Valley (RMSE � ing RMSEs by nearly 5% (absolute) (Table 5). Nugget
2.05% clay). semivariances showed that incorporation of correlated

RS data (r � 0.47, p � 0.05) improved spatial depen-
dence (Table 2). The impact of this correlation wasCokriging
evidenced via the strong 1:1 correlation between pre-

Total Carbon dicted and observed clay contents (Fig. 3). Our results
indicate that cokriged maps provided more detail andCokriging TC with red spectra improved estimates

by 0.07% (absolute) compared with ordinary kriged esti- better discriminated among small differences in clay
content (clay � 19.7% 	 7.7). Zhang et al. (1992) com-mates at the Tennessee Valley site (Table 5). Spatial

dependence (nugget semivariance � 9.6%) increased pared kriging and cokriging with remotely sensed data
to delineate soil particle-size distributions and foundwith the incorporation of red spectra and contributed

to the low observed RMSE (Tables 2 and 5). In an earlier that cokriging could reduce RMSEs by as much as 33%.
In their study, soil samples were dried and sieved (2 mm)study, Odeh et al. (1995) also demonstrated that cokrig-
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Data from the Coastal Plain demonstrate that surface
crusting impacts our ability to use RS data as a tool for
predicting soil property variability. While cokriging pro-
duced reasonable estimates of clay content using RS
data acquired pre- and post-tillage, only post-tillage co-
kriging improved estimated clay contents compared
with kriging. Conditions before tillage, including crusted
surfaces (Ben-Dor et al., 2003; Eshel et al., 2004), likely
contributed to the higher RMSE observed (Table 5).
Eshel et al. (2004) investigated the relationship between
spectral response and crust permeability using a hand-
held spectroradiometer measuring reflectance in the
400- to 2400-nm range. Their study showed that reflec-
tance from crusted surfaces was significantly greater
than noncrusted surface throughout the 400- to 2400-nm
range.

Following spring tillage and soil mixing at the Coastal
Plain site, our data indicate that reflectance more accu-
rately depicts soil texture. In fact, the observed RMSE
for cokriged clay estimates following tillage decreased
from 4.0 to 0.8%.

Multiple Linear Regression
Multiple linear regression analyses were used to relate

RS data to soil properties. At the Coastal Plain site,
regression estimates explained 11 to 61% of the variabil-
ity in TC content using primarily red and NIR spectra
pre- and post-tillage (Table 6). Estimates of clay content
using RS data explained 34 to 55% of the variability.
At the Tennessee Valley, regression estimates ac-
counted for 38 to 39% of the variability in clay and TC
content, respectively (Table 6).

Given the inherently low levels of TC at each site,
spectral response was likely a function of mineral soil

Fig. 3. Predicted (y axis) versus measured (x axis) values of total C
properties. At the Coastal Plain site, sandy epipedons(TC) and clay content at the Tennessee Valley study site. Predicted
were predominantly composed of quartz, with lesservalues were generated via kriging.
quantities of clay. This was observed via higher reflec-
tance in the VIS and NIR relative to decreasing propor-before acquiring reflectance measurements using a
tions of clay content (Fig. 2). However, the Tennesseehandheld radiometer. Their results suggest that accu-
Valley was characterized by clayey surfaces and nearlyrate, cokriged estimates of particle-size distributions
three times the amount of surface Fe content comparedcould be obtained using only 17 to 25% of the original
with the Coastal Plain. Baumgardner et al. (1970) andsampling points. Results from our study indicate that
Al-Abbas et al. (1972) suggest that Fe and Manganesefield-scale applications of co-kriging clay contents with
can mask C spectra in soils having �2% TC content.high resolution RS data can be used to produce accurate
In our case, the relationship between spectral responseestimates of clay content variability at 4-m resolution.
and TC was r 2 � 0.38, suggesting that rough surfaceFuture research is necessary to determine the minimum
conditions may have been the primary limitations in ournumber of soil samples required to obtain accurate esti-

mates of clay content using this approach. ability to estimate TC in soils having �1% TC content.

Table 6. Stepwise linear regression parameters (p � 0.05) used to estimate near surface (0–15 cm) soil properties via remotely sensed
data at the Tennessee Valley and Coastal Plain study sites. Data are reported for pre- and post-tillage conditions at the Coastal Plain
site. Remotely sensed data are defined as green (0.52–0.60 �m), red (0.63–0.69 �m), near infrared (NIR)(0.76–0.90 �m), and a green/
red band ratio.

Site Soil property Regression equation r 2

Tennessee Valley TC y � �58.85(NIR) � 45.20(Green) � 2.50 0.39
Clay y � 12.00(NIR) � �31.1(Green) � 41.1 0.38

Coastal Plain
Pretillage TC y � �3.08(NIR) � 1.32(Green) � 1.7 0.61

Clay y � �16.1(Green) � 30.6 0.34
Post-tillage TC y � �0.23(Red) � 0.96 0.11

Clay y � �18.1(Red) � �118.8 (Green/Red) � 151.8 0.55
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The regression equations reported here reflect condi-
tions specific to the site conditions at the time of RS
acquisition. This is consistent with previous studies,
which showed that differences in surface conditions
between sites (residue cover, soil water content, vegeta-
tion) confounded results (Thomasson et al., 2001; Barnes
and Baker, 2000). Thus, accurate estimates of surface
soil properties via multiple linear regression analysis
would require ground truthing proximate to RS data
acquisition.

Total Carbon

At the Tennessee Valley site, regression estimates of
TC resulted in a RMSE � 0.11% (Table 5). Analysis
of residual distributions showed a strong tendency to
underestimate at low TC contents and overestimate at
higher TC contents (Fig. 4). A comparison of kriged, co-
kriged, and multiple linear regression RMSEs suggests
that only cokriged estimates provided sufficient accu-
racy to estimate TC content under the conditions as-
sessed at the Tennessee Valley site.

Regression estimates of TC content for the Coastal
Plain site were dependent on surface conditions at the
time of RS data acquisition. Total C estimates generated
from RS data acquired before spring tillage typically
overestimated TC, having a RMSE � 0.24%. Post-till-
age estimates were less biased, and the RMSE was re-
duced to 0.14% (Table 5). This is equivalent to a 0.07%
(absolute) increase in estimated TC compared with co-
kriging with NIR spectra.

Clay

Multiple linear regression improved estimates of clay
content by nearly 2% (absolute) compared with kriged
estimates at the Tennessee Valley site. However, when
comparing multiple linear regression and cokriged data-
sets, cokriging provided the most accurate estimates of
clay content despite rough surface conditions at the time
of RS acquisition (Table 5).

Estimated clay content at the Coastal Plain site re-
Fig. 4. Distribution of residuals obtained from multiple linear regres-sulted in RMSEs ranging from 2.2 to 2.4% using pre-

sion estimates of total C (TC) content using remotely sensed dataand post-tillage RS data, respectively. Pretillage, multi- acquired at the Coastal Plain and Tennessee Valley sites.
ple linear regression resulted in lower RMSEs compared

cessfully reduced errors associated with rough surfacewith cokriging. However, using post-tillage RS data, co-
conditions at the time of RS acquisition.kriged estimates resulted in the lowest overall RMSE

(Table 5).
Fuzzy c-MeansGenerally speaking, our results are consistent with pre-

vious findings, which show cokriging soil properties with At the Tennessee Valley study site, fuzzy c-means clus-
RS data provide the most accurate estimates of soil vari- tering of RS data resulted in three soil zones. Using the
ability compared with kriging and multiple linear regres- overall field CV for each soil property as a benchmark,
sion (Odeh at al, 1995; Bishop and McBratney, 2001). our data showed that fuzzy clustering reduced the vari-
Bishop and McBratney (2001) also noted, as reported ability in clay and TC content within each zone com-
here, that multiple linear regression resulted in similar pared with the overall field CV. Clustering did not
RMSEs compared with kriged estimates of TC and clay. reduce variability in silt or sand content, having CVs
However, our data provide evidence that the spatial ranging from 14 to 32% (Table 7). With the exception of
correlation between two correlated variables (TC or zone two, soil property variability (TC and soil texture)
clay content and RS data) can be used to improve esti- within each zone was �22%, possibly limiting the use-
mates of soil property variability. Specifically, the corre- fulness of the technique in this region for directed soil

sampling or precision management.lation between soil properties and spectral response suc-
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Table 7. Analysis of soil variability as delineated by fuzzy c-means clustering of remotely sensed data acquired at the Tennessee Valley
and Coastal Plain study sites. Data are reported for pre- and post-tillage conditions at the Coastal Plain study site. Means and
coefficients of variation (CV) for surface (0–15 cm) total carbon (TC), sand, silt, and clay content are give by field (All) and soil zone.

Sand Silt Clay TC

Site Zone Mean CV Mean CV Mean CV Mean CV

Tennessee Valley 1 33.6 32.3 48.9 23.1 17.5 36.8 0.49 28.57
2 28.0 �18.0 44.2 �13.8 17.8 �23.7 0.40 33.71
3 28.0 30.8 43.5 25.0 28.6 31.7 0.50 21.95
all 34.1 29.8 46.2 22.2 19.7 39.7 0.49 45.72

Coastal Plain
pretillage 1 79.6 5.3 11.1 27.7 9.3 23.7 0.49 33.62

2 70.3 16.0 15.4 39.9 14.2 38.1 0.75 61.27
all 75.8 11.7 13.1 39.8 11.2 38.0 0.60 55.15

Coastal Plain
post-tillage 1 58.3 17.6 23.1 21.7 18.3 31.0 1.27 31.93

2 79.7 5.5 10.8 27.5 9.5 28.1 0.47 28.06
3 75.6 6.1 13.1 22.3 11.3 23.0 0.62 27.85
4 79.4 4.2 10.7 17.3 10.5 25.6 0.40 25.06
All 75.8 11.7 13.1 39.8 11.2 38.0 0.60 55.15

At the Coastal Plain site, clustering results were de- resulted in the most accurate estimates of TC and clay
pendent on field conditions at the time of RS acquisition. content. Fuzzy c-means was used to cluster pixels using
Remotely sensed data acquired before spring tillage RS data. Fuzzy c-means most effectively clustered RS
grouped pixels into two soil zones. Using the overall field data over freshly tilled fields in the Coastal Plain site.
CV for each soil property, the variability in soil properties Rough surface conditions at the Tennessee Valley site
was substantially reduced in zone one only (Table 7). and crusted surfaces before tillage at the Coastal Plain
Clustering with post-tillage RS data at the Coastal Plain site limited the utility of fuzzy c-means clustering. Thus,
site resulted in four soil zones. As the number of allow- clustering or cokriging with a correlated covariate may
able classes was increased to four, the variability in be used to provide high spatial resolution maps of soil
soil properties in zones two through four substantially property variability and facilitate soil survey mapping,
decreased compared with the overall field CV for each precision agriculture, and natural resource inventories.
soil property. Our results show that satellite based estimates of soil

Analysis of the post-tillage Coastal Plain clustering property variability work best in conventionally tilled
indicates that TC and clay content played a major role systems following spring tillage. In the future, as conser-
in soil zone delineation. Average TC and clay contents vation tillage practices become more common, research
within zones differed substantially (Table 7). Total C must address the extension of this work to measure in-
content, for example, ranged from 1.27, 0.47, 0.62, and direct indicators of soil property variability, such as,
0.40% in soil zones one through four, respectively. A yield, cover crop vigor, and distribution of crop residue
similar trend was observed for clay, with clay contents coverage proximate to planting. Keeping this in mind,
ranging from 9 to 18% in zones 1 through 4. Compared in the Southeastern Coastal Plain it is common practice
with the field average clay content of 11%, these differ- for peanut producers to clean till peanut fields. Consid-
ences are noteworthy. ering that many row crop producers are in a cotton-

Our clustering results compare well with previous peanut rotation, satellite remote sensing shows prom-
studies, and suggest that in freshly tilled soils clustering ise as a tool for the rapid assessment of soil property
accurately depicts TC and clay variability. Ahn et al. variability over large areas in the Southeastern Coastal
(1999) reported similar results using hyperspectral re- Plain.
motely sensed data to evaluate soil property variability
via linear mixing, block kriging and fuzzy c-means. Re- REFERENCESsults showed fuzzy c-means clustering with RS data
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